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ABSTRACT
The contrasting actions of mechanical forces and glucocorticoids (GC) on bone have been long recognized. However, the cellular and

molecular mechanisms by which these stimuli impact the skeleton remain only partially known. Recent evidence gained from studies on bone

cell apoptosis has revealed that mechanical forces and GC exhibit converse effects on osteocyte and osteoblast survival resulting from

divergent actions on the focal adhesion kinases FAK and Pyk2, molecules that regulate integrin-dependent interactions between bone cells

and the extracellular matrix (ECM). This prospect reviews these findings and poses the possibility that similar opposing effects on kinase

signaling are responsible for other actions of mechanical forces and GC on the skeleton, in particular on bone formation and theWnt signaling

pathway. J. Cell. Biochem. 111: 1–6, 2010. � 2010 Wiley-Liss, Inc.
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Mechanical forces enhance bone mass and strength, whereas

chronic GC excess decreases bone formation and increases

bone fragility. Bone anabolism induced by mechanical stimuli is

associated with increased pre-osteoblast proliferation, acceleration

of osteoblast differentiation, and inhibition of osteoblast and

osteocyte apoptosis [Aguirre et al., 2006; Robling and Turner, 2009;

Turner et al., 2009]. Remarkably, all these actions are also promoted

by activation of theWnt pathway [Bodine and Komm, 2006; Bodine,

2008]. Moreover, bone loading activates Wnt-dependent transcrip-

tion in osteocytes [Robinson et al., 2006] and downregulates theWnt

antagonists sclerostin expressed by osteocytes and Dkk1 expressed

by osteoblasts and osteocytes [Robling et al., 2008]. Furthermore,

the Wnt co-receptor LRP5 is required for a full anabolic response to

mechanical loading [Sawakami et al., 2006], strongly suggesting

that Wnt signaling is a crucial component of mechanotransduction

in bone. In contrast, GC excess induces a profound decrease in bone

formation resulting at least partially from inhibition of osteoblast

differentiation and induction of osteoblast apoptosis [Weinstein,

2001]. The increase in bone fragility induced by GC is also associated

with enhanced prevalence of osteocyte apoptosis. GC also inhibit

b-catenin-dependent transcription, stimulate Forkhead box O3a

(FOXO) transcription, increase Dkk1 expression, and induce reactive

oxygen species (ROS) [Canalis et al., 2007]—all events that

counteract the Wnt signaling pathway.

Recent in vitro studies revealed that the converse effects of

mechanical forces and GC on apoptosis of osteoblasts and osteocytes
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result from opposing actions on kinases of the focal adhesion family

focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2)

and downstream signaling pathways. Thus, mechanical stimuli

prevent apoptosis of osteocytes and osteoblasts by a mechanism that

requires activation of FAK and extracellular signals regulated kinases

(ERKs) [Plotkin et al., 2005]. On the other hand, GC oppose these

survival signals by activating the pro-apoptotic kinases Pyk2 and c-

Jun N-terminal kinase (JNK) [Plotkin et al., 2007a]. Remarkably, FAK/

ERK activation and anti-apoptosis induced by mechanical stimulation

in osteocytes is abolished by interfering with the Wnt signaling

pathway [Martin-Millan et al., 2008]; and conversely, Pyk2-dependent

apoptosis by GC is counteracted by Wnts [Almeida et al., 2005]. These

findings give credence to the notion that there is an antagonistic

interplay between mechanical forces and GC governed by FAK/Pyk2

signaling that impinges on the Wnt pathway and regulates osteocyte

and osteoblast survival. Whether similar opposing effects on kinase

signaling are responsible for other contrasting actions of mechanical

forces and GC on the skeleton, in particular on bone formation, awaits

elucidation.
THE FAK/Pyk2 PATHWAY AND OUTSIDE-IN AND
INSIDE-OUT SIGNALING MEDIATED BY INTEGRINS

Cells are surrounded by a complex protein network, the ECM, which

exerts a tight control on cellular functions profoundly affecting
1
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Fig. 1. Opposing actions of mechanical stimuli and GC on the FAK/Pyk2

pathway regulate osteocyte and osteoblast apoptosis. GR:GC receptor.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
proliferation, differentiation and survival. Most effects of the ECM are

mediated by integrins, cell surface receptors responsible for

attachment of cells to the matrix and for conveying chemical and

mechanical signals from it. Integrins interact with ECM proteins and

with intracellular structural and catalytic molecules at sites on the cell

surface called focal adhesions [Clark and Brugge, 1995]. Because they

lack intrinsic enzymatic activity, signaling through integrins requires

their association with molecules capable of signal transduction. This

phenomenon is facilitated by integrin location within caveolae,

specialized plasmamembranemicrodomains rich in caveolin-1. Direct

interaction of integrin b1 with caveolin-1 results in association of the

integrin with Src kinases and phosphorylation of downstream

substrates including Shc46/52 [Plotkin et al., 2005]. A molecule crucial

for integrin signaling is FAK. Integrin engagement induces FAK auto-

phosphorylation followed by its interaction with Src, which in turn

further phosphorylates FAK leading to ERK activation. Due to their

unique ability to convey information from the extracellular

environment as well as from the intracellular space, signaling

mediated by integrins is bidirectional [Hynes, 2002]. Hence, binding of

ECM proteins to integrin receptors triggers intracellular signaling, a

process called outside-in signaling. Conversely, intracellular signals or

changes in the composition of the focal adhesions regulate the

extracellular binding activity of integrins to matrix proteins, referred

to as inside-out signaling.

Accumulating evidence demonstrates that mechanical stimula-

tion of osteoblastic and osteocytic cells induced by substrate

stretching or fluid flow renders cells that are protected from

apoptosis [Pavalko et al., 2003; Bakker et al., 2004; Plotkin et al.,

2005]. Anti-apoptosis induced by mechanical forces requires

activation of ERKs, but not phosphatidylinositol-3 kinase (PI3K)

or p38 [Plotkin et al., 2005]. This ERK-activating pro-survival effect

requires nuclear translocation of the kinases and new gene

transcription and it is transmitted by integrins b1, a5, and a2

and a signalsome comprising actin filaments, microtubules,

caveolae, and Src kinases [Plotkin et al., 2005]. Furthermore,

protection from apoptosis requires activation of FAK, since a

dominant negative autophosphorylation-deficient mutant Y397F

FAK abolished the survival effect of stretching. FAK has been also

shown to be required for the induction of mechanoresponsive genes

[Young et al., 2009]. These findings support the notion that

transduction of mechanical forces into prosurvival signaling is

exerted by outside-in signaling mediated by integrins and a

signalsome comprising the focal adhesion kinase FAK and Src

kinases; resulting in activation of the ERK pathway (Fig. 1).

The in vivo relevance of FAK for bone anabolism induced by

mechanical forces however has not been addressed. FAK null mice

exhibit embryonic lethality [Furuta et al., 1995], precluding the

study of the skeletal phenotype. Mice in which FAK is lacking only

in osteoblastic cells by virtue of its deletion using Cre-lox

approaches (FAKflox/flox;Col1a1-2.3kb-Cre mice) are born normal

and without skeletal abnormalities [Kim et al., 2007]. Although basal

osteoblast differentiation is not affected, matrix deposition is poor

leading to delayed bone healing. Furthermore, ectopic matrix

deposition induced by controlled movement of implants in the

marrow cavity is defective in these mice [Leucht et al., 2007]. These

findings suggest that the response of marrow osteoprogenitors to
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mechanical stimulation might be impaired in the absence of FAK,

but do not provide a direct proof that FAK is required for

mechanotransduction in vivo. Future experiments using recognized

models of mechanical stimulation, such as the murine forelimb-

loading model, would be required to address directly the role of

FAK-mediated outside-in signaling in mechanotransduction in

bone. In addition, to dissect the individual contributions of

osteoblasts versus osteocytes to loading-induced osteogenesis, bone

cell specific FAK deletion should be pursued using the available

osteoblast or osteocyte specific promoters driven Cre recombinase.

Pyk2 is another member of the FAK family of non-receptor tyrosine

kinases, also called related adhesion focal tyrosine kinase (RAFTK),

cellular adhesion kinase (CAKb), or calcium-dependent tyrosine kinase

(CADTK). Although Pyk2 and FAK are highly homologous, they exhibit

opposite effects on cell fate. Thus, whereas FAK activation leads to cell

spreading and survival, Pyk2 induces reorganization of the cytoske-

leton, cell detachment, and apoptosis [Xiong and Parsons, 1997]. We

have shown that the pro-apoptotic effect of GC on osteocytes is due to

interference with FAK-mediated survival signals, through activation of

Pyk2 [Plotkin et al., 2007a] (Fig. 1). Hence, osteocytic cells lacking Pyk2

or overexpressing FAK are protected from GC-induced apoptosis

[Plotkin et al., 2005, 2007a]. Whether Pyk2 plays a role in the effects of

GC on the skeleton remains to be investigated. Specifically, future

studies are required to establish whether animals lacking Pyk2 are

refractory to the deleterious effects of GC on osteocyte and osteoblast

viability, as well as on osteoblastogenesis and bone formation; and

whether in the absence of FAK in vivo there is an enhanced response to

GC due to unopposed Pyk2 signaling.

MECHANOTRANSDUCTION: REQUIREMENT OF
FAK AND THE Wnt/b-CATENIN PATHWAY

Skeletal loading is essential for the maintenance of weight-bearing

bones. Bone strength is plastic and can be modulated in adults, as
JOURNAL OF CELLULAR BIOCHEMISTRY



illustrated by increased bone mass in the playing arms of athletes.

We have shown that mechanical loading improves bone strength by

inducing bone formation in regions of high strain energy [Turner

et al., 2009], demonstrating the existence of a mechanosensing

apparatus that targets osteogenesis to where bone is needed. The

most likely sensors of mechanical forces are the osteocytes, which

through interaction with the ECM enhance their biological outcomes

in response to increasing loading frequencies.

The precise mechanism of bone anabolism by mechanical

stimulation remains uncertain. However, the reduced expression

of the Wnt antagonists sclerostin and Dkk1 [Robling et al., 2008]

associated with rapid activation of the Wnt pathway in osteocytes

upon loading [Robinson et al., 2006] as well as the dependence on

LRP5 expression to achieve a full anabolic response to mechanical

stimulation [Sawakami et al., 2006] strongly suggest that the Wnt

pathway is essential for mechanotransduction. Because changes in

cytosolic calcium, ATP, prostaglandins and NO accompany

sclerostin downregulation [Bonewald and Johnson, 2008], it is

likely that other intracellular mediators participate in the skeletal

response to loading. Furthermore, the demonstration that outside-in

signaling mediated by FAK is crucial for osteocyte survival induced

by mechanical stimulation in vitro [Plotkin et al., 2005] together

with evidence that mechanically-induced FAK/ERK activation and

anti-apoptosis is abolished by Dkk1 or degradation of b-catenin

[Martin-Millan et al., 2008], suggest that ECM-integrin/FAK

signaling is linked with the Wnt/b-catenin pathway. Another

molecule required for mechanotransduction is the estrogen receptor

(ER). Thus, osteoblastic cells derived from mice lacking ERa/b or

osteocytic cells in which the ERs are silenced are not protected from

apoptosis by mechanical stimuli, and the response is rescued by

transfection of either receptor [Aguirre et al., 2007]. The ERs interact

with caveolin and with Src kinases, and an ERa unable to bind

caveolin or to locate in the cell membrane fails to confer the anti-

apoptotic effect of mechanical stimulation. Consistent with these

in vitro findings on cell survival, mice lacking ERa or ERb do not

exhibit the normal anabolic response to loading [Lee et al., 2003,

2004]. Remarkably, the ERa is also required for b-catenin nuclear

accumulation and Wnt-dependent transcription in response to

loading in vitro [Armstrong et al., 2007]. These pieces of evidence

support the hypothesis that membrane-associated forms of the ER

collaborate with FAK in transducing mechanical signals into

osteocyte/osteoblast survival. Further studies are needed to directly

test this possibility.
SKELETAL ACTIONS OF GLUCOCORTICOIDS:
Pyk2 REQUIREMENT AND INHIBITION OF THE
Wnt/b-CATENIN PATHWAY

GC, produced and released by the adrenal glands in response to

stress, regulate numerous physiological processes in a wide range of

tissues. Among many other effects, these hormones exert profound

immunosuppressive and anti-inflammatory actions and induce

apoptosis of many cell types, including T lymphocytes and

monocytes. Because of these properties, GC are extensively used
JOURNAL OF CELLULAR BIOCHEMISTRY
for the treatment of immune and inflammatory conditions, the

management of organ transplantation, and as components of

chemotherapy regimens for hematological cancers. However, long-

term use of GC is associated with severe adverse side effects

manifested in several organs. In particular, prolonged use of these

drugs leads to a dramatic loss of bone mineral and strength, similar

to endogenous elevation of GC.

Bone loss induced by GC excess has two phases [Weinstein, 2001;

Canalis et al., 2007]. The initial loss results from a transient increase

in resorption due to delayed osteoclast apoptosis. This is followed by

a sustained and profound reduction in bone formation and turnover

resulting from decreased osteoblast and osteoclast generation and

increased osteoblast apoptosis. GC also increase apoptosis of

osteocytes, which contributes to bone fragility. The pro-apoptotic

effect of GC results from direct actions on these cells. Thus, apoptosis

is readily demonstrable in cultured osteocytes and osteoblasts

(Plotkin et al., 2007a); and, furthermore, transgenic mice over-

expressing the enzyme that inactivates GC 11b-hydroxysteroid

dehydrogenase type 2 (11b-HSD2) in osteocytes and osteoblasts are

protected from GC-induced bone fragility (O’Brien et al., 2004).

The mechanism of glucocorticoid action involves binding to the

GC receptor (GR), conformational changes and nuclear translocation

of the ligand-bound receptor, followed by cis or trans interactions

with DNA and thereby induction or repression of gene transcription.

In addition, glucocorticoids exert actions independently of changes

in gene transcription. Such actions include modulation of the

activity of intracellular kinases like ERKs, JNK, and Pyk2. Our

findings demonstrate that apoptosis of osteoblastic cells by GC,

although mediated by the GC receptor, is independent of new gene

transcription and results from rapid Pyk2 and JNK activation

[Plotkin et al., 2007a]. This is consistent with evidence supporting a

role for Pyk2 on GC-induced apoptosis of myeloma cells [Chauhan

et al., 1999]. More recently, we found that the small GTPase RhoA,

and its target Rock, are involved in actin reorganization leading to

anoikis induced by GC [Plotkin et al., 2007b]. RhoA/Rock might be

activated directly by Pyk2 or indirectly by ROS elevation induced by

GC [Ohtsu et al., 2005; Dada et al., 2007] (Fig. 2). A role of kinase-

mediated effects is supported by findings in which transgenic mice

expressing a dimerization-deficient GC receptor lacking DNA

binding ability maintain a response to GC in bone [Tuckermann

et al., 2005]. The in vivo relevance of the Pyk2/JNK/RhoA/Rock

signaling could be probed by examining whether pharmacological

or genetic interference with this pathway prevents or at least

ameliorates the deleterious effects of GC on the skeleton.

GC might promote apoptosis of osteoblasts by a similar

mechanism than the one we described for osteocytes. Indeed,

survival of both osteoblasts and osteocytes is maintained by their

interaction with ECM, as neutralizing antibodies to fibronectin or

inhibitors of metaloproteinases (MMP) induce osteoblast apoptosis

[Globus et al., 1998; Karsdal et al., 2002, 2004]. Moreover,

transgenic mice expressing collagenase-resistant collagen type-I

exhibit increased osteoblast and osteocyte apoptosis [Zhao et al.,

2000]; and, osteocyte apoptosis is also elevated in MMP2 null mice

[Inoue et al., 2006]. Therefore, cellular interactions with cryptic

domains of ECM proteins exposed by MMPs appear to be required

for osteocyte and osteoblast viability. Pyk2 involvement in cell-
MECHANICAL FORCES AND GC IN BONE 3



Fig. 2. Working model: Antagonism between mechanical forces and GC governed by FAK/Pyk2 signaling, regulating the Wnt/b-catenin pathway, bone formation, and

osteocyte and osteoblast survival.. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
ECM interactions controlling osteoblast as well as osteocyte

apoptosis by GC remains to be determined.

Increasing evidence indicate that GC inhibit Wnt signaling. GC

increase expression of the antagonists Dkk1 and secreted frizzled-

related protein 1 (SFRP1) and inhibit bcatenin-dependent tran-

scription [Ohnaka et al., 2004, 2005; Wang et al., 2005; Leclerc et al.,

2008]. In addition, GC activate Shc66 [Almeida et al., 2008], a redox

enzyme of the same family that Shc46/52 but with pro-apoptotic

properties due to its ability to generate mitochondrial ROS. Shc66 is

itself a key component of the signaling cascade activated by ROS

inducing apoptosis, thereby contributing to perpetuating pro-

apoptotic signaling [Giorgio et al., 2005]. Shc66 might be a key

player in Wnt inhibition by GC. Thus, Shc66 activates Forkhead box

O (FOXO) transcription factors, either directly or through ROS

[Essers et al., 2005]. Because b-catenin is required for FOXO-

mediated transcription, there is a competition between FOXO- and

the b-catenin activated transcription factor T-cell factor- (TCF)

mediated transcription [Essers et al., 2005]. In osteoblastic cells, ROS

antagonizes the skeletal effects of Wnt/b-catenin by diverting

b-catenin from TCF- to FOXO-mediated transcription [Almeida et

al., 2007]. In addition, we found that indeed ROS-dependent

activation of FOXO is required for GC-induced apoptosis of

osteocytes and osteoblasts [Almeida et al., 2008]. Remarkably,

Pyk2 activates GSK3b leading to b-catenin degradation in several

cell models, including CHO and neuronal cells [Hartigan et al., 2001;
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Sayas et al., 2006], suggesting an additional mechanism by which

GC could inhibit Wnt/b-catenin signaling [Yun et al., 2008].

Increased endogenous GC may contribute to the bone fragility

associated with old age. Thus, similar to patients treated with GC,

older individuals are approximately 10 times more likely to suffer

fractures than younger individuals with the same mineral density

[Hui et al., 1988]. Similar to GC excess, aging in mice is associated

with increased osteocyte and osteoblast apoptosis and decreased

bone strength that is not completely explained by a reduction in

bone mineral density [Weinstein et al., 2009]. Although Pyk2 null

mice do not show gross anatomical alterations, recent studies

revealed that these animals exhibit higher bone mass. This

phenotype appears to result from defective osteoclast attachment

and resorption leading to osteopetrosis [Gil-Henn et al., 2007]

combined with increased bone formation and improved bone

structure [Buckbinder et al., 2007]. Whether the response to GC is

altered in Pyk2 deficient mice or whether Pyk2 null mice are

protected from aging-induced bone fragility warrants further

investigations.

CONCLUDING REMARKS

In closing, mounting evidence supports the hypothesis that GC

antagonize bone anabolism promoted by physiological bone
JOURNAL OF CELLULAR BIOCHEMISTRY



loading at different levels downstream of FAK/Pyk2 signaling, by

favoring activation of Pyk2 versus FAK, Shc66 versus Shc46/52, and

FOXO- versus Wnt/ERK-dependent transcription (Fig. 2). Whether

these opposing actions do indeed stem from divergent activation of

rapid kinase signaling or are independent effects of GC remains to be

directly investigated. Advancing our knowledge of the cellular and

molecular mechanisms by which mechanical forces and GC act on

bone has the potential of improving therapeutic interventions

attempting to preserve or restore skeletal health in patients treated

with GC or exhibiting endogenous GC elevation such, as during

aging.
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